University of the Thai Chamber of Commerce Library

Bio-inspired networking / Daniel Camara.

By: Camara, Daniel [author.]Material type: TextTextPublisher: London ; Oxford : ISTE Press ; Elsevier, 2015Description: 1 online resourceContent type: text Media type: computer Carrier type: online resourceSubject(s): Computer networks | ComputersDDC classification: 004.6 Online resources: eBook-ScienceDirect
Contents:
Machine generated contents note: ch. 1 Evolution and Evolutionary Algorithms -- 1.1. Brief introduction to evolution -- 1.2. Mechanisms of evolution -- 1.2.1. DNA code -- 1.2.2. Mutation -- 1.2.3. Sexual reproduction and recombination -- 1.2.4. Natural selection -- 1.2.5. Genetic drift -- 1.3. Artificial evolution -- 1.3.1. The basic process -- 1.3.2. Limitations -- 1.4. Applications on networks -- 1.4.1.Network positioning -- 1.4.2. Routing -- 1.4.3. Other works -- 1.5. Further reading -- 1.6. Bibliography -- ch. 2 Chemical Computing -- 2.1. Artificial chemistry -- 2.2. Applications on networks -- 2.2.1. Data dissemination -- 2.2.2. Routing -- 2.3. Further reading -- 2.4. Bibliography -- ch. 3 Nervous System -- 3.1. Nervous system hierarchy -- 3.1.1. Central nervous system -- 3.1.2. Peripheral nervous system -- 3.2. The neuron -- 3.3. The neocortex -- 3.4. Speed and capacity -- 3.5. Artificial neural networks -- 3.5.1. The perceptron -- 3.5.2. Interconnecting perceptrons -- 3.5.3. Learning process.
Note continued: 3.5.4. The backpropagation algorithm -- 3.6. Applications on networks -- 3.6.1. ANN in intrusion detection systems -- 3.6.2. Fault detection -- 3.6.3. Routing -- 3.7. Further reading -- 3.8. Bibliography -- ch. 4 Swarm Intelligence (SI) -- 4.1. Ant colony optimization -- 4.2. Applications on networks -- 4.2.1. Ants colony on routing -- 4.2.2. Ants colony on intrusion detection -- 4.3. Particle swarm optimization -- 4.4. Applications on networks -- 4.4.1. Particle swarm on node positioning -- 4.4.2. Particle swarm on intrusion detection -- 4.5. Further reading -- 4.6. Bibliography.
Summary: Bio-inspired techniques are based on principles, or models, of biological systems. In general, natural systems present remarkable capabilities of resilience and adaptability. In this book, we explore how bio-inspired methods can solve different problems linked to computer networks.
List(s) this item appears in: ทรัพยากรใหม่ประจำเดือน มกราคม 2564
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Home library Collection Call number Status Date due Barcode Item holds
E-book E-book UTCC Library
E-Books (English) 004.6 C172b (Browse shelf) Online Access
Total holds: 0

Machine generated contents note: ch. 1 Evolution and Evolutionary Algorithms -- 1.1. Brief introduction to evolution -- 1.2. Mechanisms of evolution -- 1.2.1. DNA code -- 1.2.2. Mutation -- 1.2.3. Sexual reproduction and recombination -- 1.2.4. Natural selection -- 1.2.5. Genetic drift -- 1.3. Artificial evolution -- 1.3.1. The basic process -- 1.3.2. Limitations -- 1.4. Applications on networks -- 1.4.1.Network positioning -- 1.4.2. Routing -- 1.4.3. Other works -- 1.5. Further reading -- 1.6. Bibliography -- ch. 2 Chemical Computing -- 2.1. Artificial chemistry -- 2.2. Applications on networks -- 2.2.1. Data dissemination -- 2.2.2. Routing -- 2.3. Further reading -- 2.4. Bibliography -- ch. 3 Nervous System -- 3.1. Nervous system hierarchy -- 3.1.1. Central nervous system -- 3.1.2. Peripheral nervous system -- 3.2. The neuron -- 3.3. The neocortex -- 3.4. Speed and capacity -- 3.5. Artificial neural networks -- 3.5.1. The perceptron -- 3.5.2. Interconnecting perceptrons -- 3.5.3. Learning process.

Note continued: 3.5.4. The backpropagation algorithm -- 3.6. Applications on networks -- 3.6.1. ANN in intrusion detection systems -- 3.6.2. Fault detection -- 3.6.3. Routing -- 3.7. Further reading -- 3.8. Bibliography -- ch. 4 Swarm Intelligence (SI) -- 4.1. Ant colony optimization -- 4.2. Applications on networks -- 4.2.1. Ants colony on routing -- 4.2.2. Ants colony on intrusion detection -- 4.3. Particle swarm optimization -- 4.4. Applications on networks -- 4.4.1. Particle swarm on node positioning -- 4.4.2. Particle swarm on intrusion detection -- 4.5. Further reading -- 4.6. Bibliography.

Bio-inspired techniques are based on principles, or models, of biological systems. In general, natural systems present remarkable capabilities of resilience and adaptability. In this book, we explore how bio-inspired methods can solve different problems linked to computer networks.

There are no comments on this title.

to post a comment.
สำนักหอสมุดกลาง มหาวิทยาลัยหอการค้าไทย
เลขที่ 126/1 ถนนวิภาวดีรังสิต แขวงรัชดาภิเษก เขตดินแดง กรุงเทพฯ 10400
โทรศัพท์: 0-2697-6251, 0-2697-6260 โทรสาร: 0-2697-6251 อีเมล: library@utcc.ac.th